



## RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL

SCHEME OF STUDIES & EXAMINATIONS (IMPLEMENTED FROM SESSION: JULY 2023)

SCHEME OCBC JULY 2022/2023 NAME OF BRANCH
OPTO ELECTRONICS ENGG.

BRANCH CODE O 01

SEMESTER THIRD (III)

| П    |               |                 |                                   |            |         | Т               | HEOI            | RY CO | OMP   | ONENT |          | PR           | ACTI     | CAL (    | COMP  | ONENT    |               |                   |     |     |
|------|---------------|-----------------|-----------------------------------|------------|---------|-----------------|-----------------|-------|-------|-------|----------|--------------|----------|----------|-------|----------|---------------|-------------------|-----|-----|
|      |               |                 |                                   | H<br>H     |         | WEEK            |                 | TE    | RM    | WOF   | RK       | THEO         | RY PAPER | K        |       |          |               | ACTICAL<br>M/VIVA | ITS | IKS |
| S.N. | PAPER<br>CODE | SUBJECT<br>CODE | SUBJECT NAME                      | HRS PER WE | CREDITS | QUIZ/ASSIGNMENT | M<br>TEI<br>TES | RM    | TOTAL | MARKS | DURATION | HRS PER WEEK | CREDITS  | LAB WORK | MARKS | DURATION | TOTAL CREDITS | TOTAL MARKS       |     |     |
| 1    | 7456          | 301             | ET. DEVICES & CIRCUITS            | 3          | 3       | 10              | 10              | 10    | 30    | 70    | 03 Hrs.  | 4            | 2        | 20       | 30    | 03 Hrs.  | 5             | 150               |     |     |
| 2    | 7457          | 302             | DIGITAL SYSTEM                    | 3          | 3       | 10              | 10              | 10    | 30    | 70    | 03 Hrs.  | 4            | 2        | 20       | 30    | 03 Hrs.  | 5             | 150               |     |     |
| 3    | 7458          | 303             | ET. MEASUREMENT & INST.           | 3          | 3       | 10              | 10              | 10    | 30    | 70    | 03 Hrs.  | 2            | 1        | 20       | 30    | 03 Hrs.  | 4             | 150               |     |     |
| 4    | 7459          | 304             | ELECTRIC CIRCUITS & NETWORK       | 4          | 4       | 10              | 10              | 10    | 30    | 70    | 03 Hrs.  | 0            | 0        | 0        | 0     | 0        | 4             | 100               |     |     |
| 5    | 7460          | 305             | PRINCIPLES OF ET. COMM.           | 3          | 3       | 10              | 10              | 10    | 30    | 70    | 03 Hrs.  | 4            | 2        | 20       | 30    | 03 Hrs.  | 5             | 150               |     |     |
| 6    |               |                 | **SUMMER INTERNSHIP- I            | 0          | 0       | 0               | 0               | 0     | 0     | 0     | 0        | 0            | 2        | 20       | 30    | 03 Hrs.  | 2             | 50                |     |     |
| 7    |               |                 | PROFESSIONAL DEVELOPMENT          | 0          | 0       | 0               | 0               | 0     | 0     | 0     | 0        | 2            | 0        | 0        | 0     | 0        | 0             | 0                 |     |     |
| 8    |               |                 | ***RECOVERY CLASSES/LIBERARY etc. | 0          | 0       | 0               | 0               | 0     | 0     | 0     | 0        | 4            | 0        | 0        | 0     | 0        | 0             | 0                 |     |     |
|      |               |                 | TOTAL                             | 16         | 16      |                 |                 |       | 150   | 350   |          | 20           | 9        | 100      | 150   |          | 25            | 750               |     |     |

**NOTE -** (1)\* Two Best, out of Three Mid Term Tests (Progressive Tests) Marks should be entered here.

(2)\*\* 3-4 Weeks Summer Internship after II Semester.

(3)\*\*\*To recover courses if session delays due to summer internship.

GRAND TOTAL OF CREDITS
25

GRAND TOTAL OF MARKS 750



DIPLOMA IN OPTO ELECTRONICS ENGINEERING (O 01)

## SEMESTER III

| COURSE TITLE      | : | ELECTRONICS DIVICES AND CIRCUITS |
|-------------------|---|----------------------------------|
| PAPER CODE        | : | 7456                             |
| SUBJECT CODE      | : | 301                              |
| TREORY CREDITS    | : | 03                               |
| PRACTICAL CREDITS | : | 02                               |

### **Course Content:**

## **Unit 1** – Semiconductor and Diodes

Definition, Extrinsic/Intrinsic, N-type & p-type

PN Junction Diode – Forward and Reverse Bias Characteristics

Zener Diode - Principle, characteristics, construction, working

Diode Rectifiers - Half Wave and Full Wave

Filters - C, LC and PI Filters

## **Unit 2** – Bipolar Junction Transistor (BJT)

NPN and PNP Transistor - Operation and characteristics

Common Base Configuration – characteristics and working

Common Emitter Configuration – characteristics and working

Common Base Configuration – characteristics and working

High frequency model of BJT

Classification of amplifiers, negative feedback

### **Unit 3** – Field Effect Transistors

FET - Working Principle, Classification

MOSFET Small Signal model

N-Channel/ P-Channel MOSFETs – characteristics, enhancement and depletion mode, MOSFET as a Switch

**Common Source Amplifiers** 

Uni-Junction Transistor – equivalent circuit and operation

## **Unit 4** – SCR DIAC & TRIAC

SCR – Construction, operation, working, characteristics

DIAC - Construction, operation, working, characteristics

TRIAC - Construction, operation, working, characteristics

SCR and MOSFET as a Switch, DIAC as bidirectional switch

Comparison of SCR, DIAC, TRIAC, MOSFET

## **Unit 5** – Amplifiers and Oscillators

Feedback Amplifiers – Properties of negative Feedback, impact of feedback on different parameters

Basic Feedback Amplifier Topologies: Voltage Series, Voltage Shunt Current Series, Current Shunt

Oscillator - Basic Principles, Crystal Oscillator, Non-linear/Pulse Oscillator

## **SUGGESTED LEARNING RESOURCES:**

| S. No. | Title of Book                          | Author                                | Publication                                                              |
|--------|----------------------------------------|---------------------------------------|--------------------------------------------------------------------------|
| 1.     | Analog Circuits                        | A.K. Maini                            | Khanna Publishing House<br>Ed. 2018 (ISBN: 978-93-86173-584)             |
| 2.     | Electronic Devices and Circuits        | S. Salivahanan and<br>N. Suresh Kumar | McGraw Hill Education; Fourth edition (1 July 2017) ISBN: 978-9339219505 |
| 3.     | Electronics Devices and circuit theory | Boyestad & Nash-<br>elsky             | Pearson Education India; 11 edition (2015) ISBN: 978-9332542600          |
| 4.     | Electronic Principles                  | Albert Malvino &<br>David Bates       | Tata McGraw Hill Publication 2010<br>ISBN: 978-0070634244                |
| 5.     | Electronics Devices & Circuits         | Jacob Millman                         | McGraw Hill Education; 4 edition (2015)<br>ISBN: 978-9339219543          |

## SUGGESTED SOFTWARE/LEARNING WEBSITES:

- a. https://www.electronics-tutorials.ws/
- b. https://www.youtube.com/watch?v=Rx43l-QpeWQ
- c. https://electronicsforu.com/resources/electronic-devices-and-circuit-theory

## **ELCTRONIC DEVICES AND CIRCUITS LAB**

## **Course Content:**

## SUGGESTED PRACTICALS/ EXERCISES

The practical in this section are PrOs (i.e. sub-components of the COs) to be developed and assessed in the student for the attainment of the competency.

| S. No. | Practical Outcomes (PrOs)                                                                                                                         | Unit No. |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1.     | Construct the circuit and plot the VI characteristics of the PN Junction Diode , find the cut in voltage $$                                       | 1        |
| 2.     | Construct the circuit and plot the characteristics of a Zener Diode. Find the breakdown voltage                                                   | 1        |
| 3.     | Construct a Half Wave Rectifier and obtain regulation characteristics – Without Filters and with Filters Compare the results                      | 1        |
| 4.     | Construct a Full Wave Rectifier and obtain regulation characteristics – Without Filters and with Filters Compare the results                      | 1        |
| 5.     | Construct a Bridge Rectifier and obtain regulation characteristics – Without Filters and with Filters                                             | 1        |
| 6.     | Obtain the characteristics of DIAC and TRIAC                                                                                                      | 3        |
| 7.     | Simulate half wave, full wave and bridge rectifier using simulation tool like PSpice/Orcad/Multisim.                                              | 3        |
| 8.     | Develop a simulation model for Voltage Series and Voltage Shunt Feedback Amplifiers                                                               | 5        |
| 9.     | Develop circuits for Voltage Series and Voltage Shunt Feedback Amplifiers and obtain output plots. Compare the results with the simulation model. | 5        |
| 10.    | Develop a simulation model for Current Series and Current Shunt Feedback Amplifiers                                                               | 5        |
| 11.    | Develop circuits for Current Series and Current Shunt Feedback Amplifiers and obtain output plots. Compare the results with the simulation model. |          |
| 12.    | Total                                                                                                                                             |          |

## **Reference Books:**

| S. No. | Title of Book                          | Author                                | Publication                                                              |  |  |
|--------|----------------------------------------|---------------------------------------|--------------------------------------------------------------------------|--|--|
| 1.     | Analog Circuits                        | A.K. Maini                            | Khanna Publishing House<br>Ed. 2018 (ISBN: 978-93-86173-584)             |  |  |
| 2.     | Electronic Devices and Circuits        | S. Salivahanan and<br>N. Suresh Kumar | McGraw Hill Education; Fourth edition (1 July 2017) ISBN: 978-9339219505 |  |  |
| 3.     | Electronics Devices and circuit theory | Boyestad & Nash-<br>elsky             | Pearson Education India; 11 edition (2015) ISBN: 978-9332542600          |  |  |
| 4.     | Electronic Principles                  | Albert Malvino & David Bates          | Tata McGraw Hill Publication 2010 ISBN: 978-0070634244                   |  |  |
| 5.     | Electronics Devices & Circuits         | Jacob Millman                         | McGraw Hill Education; 4 edition (2015) ISBN: 978-9339219543             |  |  |



DIPLOMA IN OPTO ELECTRONICS ENGINEERING (O 01)

## SEMESTER III

| COURSE TITLE      | : | DIGITAL SYSTEM |
|-------------------|---|----------------|
| PAPER CODE        | : | 7457           |
| SUBJECT CODE      | : | 302            |
| TREORY CREDITS    | : | 03             |
| PRACTICAL CREDITS | : | 02             |

### **Course Content:**

## Unit 1 - Number Systems & Boolean Algebra

Introduction to different number systems – Binary, Octal, Decimal, Hexadecimal

Conversion from one number system to another.

Boolean variables - Rules and laws of Boolean Algebra

De-Morgan's Theorem

Karnaugh Maps and their use for simplification of Boolean expressions

## **Unit 2** – Logic Gates

Logic Gates – AND, OR, NOT, NAND, NOR , XOR, XNOR: Symbolic representation and truth table

Implementation of Boolean expressions and Logic Functions using gates

Simplification of expressions

## **Unit 3** – Combinational Logic Circuits

Arithmetic Circuits – Addition, Subtraction, 1's 2's Complement, Half Adder, Full Adder, Half Subtractor, Full Subtractor, Parallel and Series Adders

Encoder, Decoder

Multiplexer – 2 to 1 MUX, 4 to 1 MUX, 8 to 1 MUX. Applications

Demultiplexer - 1 to 2 DEMUX, 1- 4 DEMUX, 1- 8 DEMUX

## **Unit 4** – Sequential Logic Circuits

Flip Flops – SR,JK, T, D, FF, JK-MS, Triggering

Counters – 4 bit Up – Down Counters, Asynchronous/ Ripple Counter, Decade Counter- Mod 3, Mod 7 Counter, Johnson Counter, Ring Counter

Registers – 4bit Shift Register: Serial In Serial Out, Serial in Parallel Out, Parallel In Serial Out, Parallel In Parallel Out

## **Unit 5** – Memory Devices

Classification of Memories - RAM Organization, Address Lines and Memory Sixe,

Static RAM, Bipolar RAM, cell Dynamic RAM, D RAM, DDR RAM

Read Only memory – ROM organization, Expanding memory, PROM, EPROM, EEPROM, Flash memory

Data Converters – Digital to Analog converters, Analog to Digital Converters

## **SUGGESTED LEARNING RESOURCES:**

| S.No. | Title of Book                                                | Author                                   | Publication                                                                                         |
|-------|--------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 1.    | Digital principles & Applications                            | Albert Paul Malvino<br>& Donald P. Leach | McGraw Hill Education; Eighth edition ISBN: 978-9339203405                                          |
| 2.    | Digital Electronics                                          | Roger L. Tokheim<br>Macmillian           | McGraw-Hill Education (ISE Editions);<br>International 2 Revised ed edition<br>ISBN: 978-0071167963 |
| 3.    | Digital Electronics – an introduction to theory and practice |                                          | Prentice Hall India Learning Private<br>Limited; 2 edition<br>ISBN: 978-8120303485                  |
| 4.    | Fundamentals of Logic<br>Design                              | Charles H. Roth Jr.                      | Jaico Publishing House; First edition ISBN: 978-8172247744                                          |
| 5.    | Digital Electronics                                          | R. Anand                                 | Khanna Publications, New Delhi<br>(Edition 2018) ISBN: 978-93-82609445                              |

## **DIGITAL SYSTEM LAB**

## **Course Content:**

## SUGGESTED PRACTICALS/ EXERCISES

The practical in this section are PrOs (i.e. sub-components of the COs) to be developed and assessed in the student for the attainment of the competency.

| S.<br>No. | Practical Outcomes (PrOs)                                                                                                | Unit<br>No. | Approx.<br>Hrs.<br>Required |
|-----------|--------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|
| 1.        | To verify the truth tables for all logic fates – NOT OR AND NAND NOR XOR XNOR using CMOS Logic gates and TTL Logic Gates | 1           | 02                          |
| 2.        | Implement and realize Boolean Expressions with Logic Gates                                                               | 2           | 02                          |
| 3.        | Implement Half Adder, Full Adder, Half Subtractor, Full subtractor using ICs                                             | 3           | 02                          |
| 4.        | Implement parallel and serial full-adder using ICs                                                                       | 3           | 02                          |
| 5.        | Design and development of Multiplexer and De-multiplexer using multiplexer ICs                                           | 3           | 02                          |
| 6.        | Verification of the function of SR,D, JK and T Flip Flops                                                                | 4           | 02                          |
| 7.        | Design controlled shift registers                                                                                        | 4           | 02                          |
| 8.        | Construct a Single digit Decade Counter (0-9) with 7 segment display                                                     | 4           | 03                          |
| 9.        | To design a programmable Up-Down Counter with a 7 segment display.                                                       | 4           | 03                          |
| 10.       | Study of different memory ICs                                                                                            | 5           | 02                          |

| S.<br>No. | Practical Outcomes (PrOs)                                            | Unit<br>No. | Approx.<br>Hrs.<br>Required |
|-----------|----------------------------------------------------------------------|-------------|-----------------------------|
| 11.       | Study Digital- to – Analog and Analog to Digital Converters          | 5           | 02                          |
| 12.       | Simulate in Software (such as PSpice) an Analog to Digital Converter | 5           | 03                          |
| 13.       | Simulate in Software (such as PSpice) an Analog to Digital Converter | 5           | 03                          |
|           | Total                                                                |             | 30                          |

## **Reference Books:**

| S.No. | Title of Book                                                | Author                                | Publication                                                                                         |
|-------|--------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------|
| 1.    | Digital principles & Applications                            | Albert Paul Malvino & Donald P. Leach | McGraw Hill Education; Eighth edition ISBN: 978-9339203405                                          |
| 2.    | Digital Electronics                                          | Roger L. Tokheim<br>Macmillian        | McGraw-Hill Education (ISE Editions);<br>International 2 Revised ed edition<br>ISBN: 978-0071167963 |
| 3.    | Digital Electronics – an introduction to theory and practice |                                       | Prentice Hall India Learning Private<br>Limited; 2 edition<br>ISBN: 978-8120303485                  |
| 4.    | Fundamentals of Logic<br>Design                              | Charles H. Roth Jr.                   | Jaico Publishing House; First edition ISBN: 978-8172247744                                          |
| 5.    | Digital Electronics                                          | R. Anand                              | Khanna Publications, New Delhi<br>(Edition 2018) ISBN: 978-93-82609445                              |



DIPLOMA IN OPTO ELECTRONICS ENGINEERING (O 01)

## SEMESTER III

| COURSE TITLE      | : | ELECTRONIC MEASUREMENT AND INSTRIMENTATION |
|-------------------|---|--------------------------------------------|
| PAPER CODE        | : | 7458                                       |
| SUBJECT CODE      | : | 303                                        |
| TREORY CREDITS    | : | 03                                         |
| PRACTICAL CREDITS | : | 01                                         |

## **Course Content:**

## Unit - I Basics of Measurements and Bridges

Accuracy & precision, Resolution

Types of Errors

DC Bridges - Wheatstone and Kelvin Double Bridge

AC Bridges - Maxwell's Bridge, Hay's Bridge, Anderson Bridge, De-Sauty's Bridge

## **Unit-II Potentiometer**

Basic DC slide wire Potentiometer

Crompton's DC Potentiometer

Applications of DC Potentiometer

**AC Potentiometers** 

Applications of AC Potentiometers

## **Unit-III Measuring Instruments**

Permanent Magnet Moving Coil Instruments (PMMC)

Moving Iron type Instruments (MI)

Electro Dynamo Type Instruments

Single Phase Energy Meter

## **Unit- IV Electronic Instruments**

Electronic Voltmeter and Digital Voltmeter

**Electronic Multimeters** 

Q - Meter

**Vector Impedance Meter** 

## **Unit-V Oscilloscopes**

Cathode ray tube: construction, operation, screens, graticules

Vertical deflection system, Horizontal deflection system, Delay line,

Measurement of frequency, time delay, phase angle and modulation index (trapezoidal method)

Oscilloscope probe: Structure of 1:1 and 10:1 probe

Multiple Trace CRO

## **Unit-VI Transducers**

Classification, Selection Criteria, Characteristics, Construction, Working Principles and Application of following Transducers:

RTD, Thermocouple, Thermistor

LVDT, Strain Gauge

Load Cell

Piezoelectric Transducers

## **SUGGESTED LEARNING RESOURCES:**

| S.<br>No. | Title of Book                                              | Author                                                                      | Publication                         |
|-----------|------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------|
| 1.        | Electrical & Electronic Measurement & Instruments          | A.K. Sawhney                                                                | Dhanpat Rai & Sons, India           |
| 2.        | Electronic Instrument and Measurement Technique            | W.D. Cooper                                                                 | Prentice Hall International, India. |
| 3.        | Electronic Measurement & Instrumentation                   | J.G. Joshi                                                                  | Khanna Publishing House,<br>Delhi   |
| 4.        | Measurement systems application and design                 | E.O. Doebelin and D. N.<br>Manik                                            | The Mcgraw-Hill                     |
| 5.        | Electronic Measurements and Instrumentation                | Oliver and Cage                                                             | The Mcgraw-Hill                     |
| 6.        | Basic Electrical Measurement                               | M.B. Stout                                                                  | Prentice hall of India, India       |
| 7.        | Electronic Instrumentation                                 | H. S. Kalsi                                                                 | The Mcgraw-Hill                     |
| 8.        | Electrical and Electronics Measurement and Instrumentation | Prithwiraj Pukrait, Bud-<br>haditya Biswas, Santanu<br>Das, Chiranjib Koley | The Mcgraw-Hill                     |

## **ELECTRONIC MEASUREMENTS AND INSTRIMENTATION LAB**

## **Course Content:**

## SUGGESTED PRACTICALS/ EXERCISES

The practical in this section are PrOs (i.e. sub-components of the COs) to be developed and assessed in the student for the attainment of the competency.

| S.<br>No. | Practical Outcomes (PrOs)                                                                 | Unit No. | Approx Hrs.<br>Required |
|-----------|-------------------------------------------------------------------------------------------|----------|-------------------------|
| 1.        | Measure unknown inductance using following bridges (a) Anderson Bridge (b) Maxwell Bridge | I        | 4                       |
| 2.        | Measure Low resistance by Kelvin's Double Bridge                                          | I        | 2                       |
| 3.        | Calibrate an ammeter using DC slide wire potentiometer                                    | II       | 2                       |
| 4.        | Calibrate a voltmeter using Crompton potentiometer                                        | II       | 2                       |
| 5.        | Measure low resistance by Crompton potentiometer                                          | II       | 2                       |
| 6.        | Calibrate a single-phase energy meter by phantom loading                                  | III      | 2                       |
| 7.        | Study the working of Q-meter and measure Q of coils                                       | IV       | 2                       |

| 8.  | Study working and applications of (i) C.R.O. (ii) Digital Storage C.R.O. & (ii) C.R.O. Probes | V  | 2 |
|-----|-----------------------------------------------------------------------------------------------|----|---|
| 9.  | Measurement of displacement with the help of LVDT                                             | VI | 2 |
| 10. | Draw the characteristics of the following temperature transduc-                               | VI | 2 |
|     | ers (a) RTD (Pt-100) (b) Thermistor                                                           |    |   |

## **Reference Books:**

| S. No. | Title of Book                                              | Author                                                                      | Publication                         |
|--------|------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------|
| 1.     | Electrical & Electronic Measurement & Instruments          | A.K. Sawhney                                                                | Dhanpat Rai & Sons, India           |
| 2.     | Electronic Instrument and Measurement Technique            | W.D. Cooper                                                                 | Prentice Hall International, India. |
| 3.     | Electronic Measurement & Instrumentation                   | J.G. Joshi                                                                  | Khanna Publishing House,<br>Delhi   |
| 4.     | Measurement systems application and design                 | E.O. Doebelin and D. N.<br>Manik                                            | The Mcgraw-Hill                     |
| 5.     | Electronic Measurements and Instrumentation                | Oliver and Cage                                                             | The Mcgraw-Hill                     |
| 6.     | Basic Electrical Measurement                               | M.B. Stout                                                                  | Prentice hall of India, India       |
| 7.     | Electronic Instrumentation                                 | H. S. Kalsi                                                                 | The Mcgraw-Hill                     |
| 8.     | Electrical and Electronics Measurement and Instrumentation | Prithwiraj Pukrait, Bud-<br>haditya Biswas, Santanu<br>Das, Chiranjib Koley | The Mcgraw-Hill                     |



DIPLOMA IN OPTO ELECTRONICS ENGINEERING (O 01)

## SEMESTER III

| COURSE TITLE      | : | ELECTRIC CIRCUITS & NETWORK |
|-------------------|---|-----------------------------|
| PAPER CODE        | : | 7459                        |
| SUBJECT CODE      | : | 304                         |
| TREORY CREDITS    | : | 04                          |
| PRACTICAL CREDITS | : | 00                          |

## **Course Content:**

## Unit - 1 Basics of Network and Network Theorem

Node and Mesh Analysis

**Superposition Theorem** 

Thevenin Theorem

Norton Theorem

Maximum Power transfer theorem

**Reciprocity Theorem** 

## Unit-2 Graph Theory

Graph of network, tree, incidence matrix

F- Tie Set Analysis

F-Cut Set Analysis

Analysis of resistive network using cut-set and tie-set

Duality

## **Unit-3 Time Domain and Frequency Domain Analysis**

Solution of first and second order differential equations for Series and parallel R-L, R-C, R-L-C circuits

Initial and Final conditions in network elements

Forced and Free response, time constants

Steady State and Transient State Response

Analysis of electrical circuits using Laplace Transform for standard inputs (unit, Ramp, Step)

## Unit-4 Trigonometric and exponential Fourier series

Discrete spectra and symmetry of waveform

Steady state response of a network to non-sinusoidal periodic inputs, power factor, effective values

Fourier transform and continuous spectra

## **Unit- 5 Two Port Network**

Two Port Network
Open Circuit Impedance Parameters
Short Circuit Admittance Parameters
Transmission Parameters
Hybrid Parameters
Interrelationship of Two Port Network
Inter Connection of Two Port Network

# SUGGESTED LEARNING RESOURCES: SUGGESTED SOFTWARE/LEARNING WEBSITES

| S. No. | Title of Book                | Author                                      | Publication                           |
|--------|------------------------------|---------------------------------------------|---------------------------------------|
| 1      | Networks and Systems         | Ashfaq Husain                               | Khanna Publishing House               |
| 2      | Network Analysis             | M. E. Van Valkenburg                        | Prentice Hall of India                |
| 3      | Engineering Circuit Analysis | W. H. Hayt, J. E. Kemmerly and S. M. Durbin | McGraw Hill                           |
| 4      | Electrical Circuits          | Joseph Edminister                           | Schaum's Outline, Tata<br>McGraw Hill |
| 5      | Basic Circuit Theory         | Lawrence P. Huelsma                         | Prentice Hall of India                |
| 6      | Network & Systems            | D. Roy Choudhury                            | Wiley Eastern Ltd                     |
| 7      | Linear Circuit Analysis      | De Carlo and Lin                            | Oxford Press                          |



DIPLOMA IN OPTO ELECTRONICS ENGINEERING (0 01)

#### SEMESTER III

| COURSE TITLE      | : | PRINCIPLES OF ELECTRONIC COMMUNICATION |
|-------------------|---|----------------------------------------|
| PAPER CODE        | : | 7460                                   |
| SUBJECT CODE      | : | 305                                    |
| TREORY CREDITS    | : | 03                                     |
| PRACTICAL CREDITS | : | 02                                     |

### **Course Content:**

**ANALOG MODULATION:** Concept of frequency translation. Amplitude Modulation: Description of full AM, DSBSC, SSB and VSB in time and frequency domains, methods of generation & demodulation, descriptions of FM signal in time and frequency domains

**PULSE ANALOG MODULATION:** Ideal sampling, Sampling theorem, aliasing, interpolation, natural and flat top sampling in time and frequency domains

**PCM & DELTA MODULATION SYSTEMS**: Uniform and Non-uniform quantization. PCM and delta modulation, Signal to quantization noise ratio in PCM and delta modulation.

**DIGITAL MODULATION:** Baseband transmission: Line coding (RZ, NRZ), inter symbol interference (ISI), pulse shaping, Nyquist criterion for distortion free base band transmission, raised cosine spectrum. Pass band transmission: Geometric interpretation of signals, orthogonalization.

**SPREAD-SPECTRUM MODULATION:** Introduction, Pseudo-Noise sequences, direct sequence spread spectrum (DSSS) with coherent BPSK, processing gain, probability of error, frequency-hop spread spectrum (FHSS). Application of spread spectrum: CDMA.

## Books:

- 1. Principles of communication systems By Taub Schilling, T.M.H.
- 2. Fundamentals of communication systems By Proakis & Salehi, Pearson education
- 3. Communication Systems by Simon Haykin, John Wiley
- 4. Communication Systems (Analog and Digital) By R.P. Singh, S.D. Sapre, T.M.H.
- 5. Modern Digital & Analog Communication By B.P. Lathi, Oxford Publications
- 6. Digital & Analog Communication Systems By K.S. Shanmugam, John Wiley

## **Course Outcomes:**

- 1. Use of different modulation and demodulation techniques used in analog communication.
- 2. Identify and solve basic communication problems.
- 3. Analyse transmitter and receiver circuits.
- 4. Compare and contrast design issues, advantages, disadvantages and limitations of analog communication systems.

## PRINCIPLES OF ELECTRONIC COMMUNICATION LAB

#### **Course Content:**

- 1. Harmonic analysis of a square wave of modulated waveform: measures modulation index.
- 2. To modulate a high frequency carrier with sinusoidal signal to obtain FM signal.
- 3. To study and observe the operation of a super heterodyne receiver
- 4. To modulate a pulse carrier with sinusoidal signal to obtain PWM signal and demodulate it.
- 5. To modulate a pulse carrier with sinusoidal signal to obtain PPM signal and demodulate it.
- 6. To observe pulse amplitude modulated waveform and its demodulation.
- 7. To observe the operation of a PCM encoder and decoder. To consider reason for using digital signal x-missions of analog signals.
- 8. To study & observe the amplitude response of automatic gain controller (AGC).

## **Practical Outcomes (PrOs)**

- 2. Understanding the different techniques of signal modulation and demodulation.
- 3. Understanding the variation in amplitude of controllers.



DIPLOMA IN OPTO ELECTRONICS ENGINEERING (O 01) SEMESTER-III

| COURSE TITLE      | : | SUMMER INTERNSHIP - I |
|-------------------|---|-----------------------|
| PAPER CODE        | : |                       |
| SUBJECT CODE      | : |                       |
| TREORY CREDITS    | : | 00                    |
| PRACTICAL CREDITS | : | 02                    |

## SUMMER INTERNSHIP -

3-4 weeks summer internship after  $II^{nd}$  Semester.

It should be undertaken in an industry/Govt. or Pvt. Certified Agencies which are in social sector/Govt. Skill Centers/Schemes.

Evaluation is based on work done, quality of report, performance in viva-voce, presentation etc.



DIPLOMA IN OPTO ELECTRONICS ENGINEERING (0 01) SEMESTER - III

| COURSE TITLE      | : | PROFESSIONAL DEVELOPMENT |
|-------------------|---|--------------------------|
| PAPER CODE        | : |                          |
| COURSE CODE       | : |                          |
| TREORY CREDITS    | : | 00                       |
| PRACTICAL CREDITS | : | 00                       |

## **Course Objectives:**

Following are the objectives of this course:-

- (1) To learn the principles of Professional and Social ethics.
- (2) To know the concept of Lifelong learning and Self-directed learning.
- (3) To present self for employment.
- (4) To introduce the need of industrial visits.
- (5) To understand CV, Resume, Bio-data and Interview and their significance.
- (6) To develop the skills of Group Discussion.

#### **Course Content:**

## Unit - I Professional and Social Ethics

Professional ethics, its need and importance, general code of ethics for engineers, ethical issues for engineers.

Need and importance of social skills, social skills for better group performance, important social skills such as social perceptiveness, coordination, negotiation, persuasion etc.

## Unit - II Lifelong learning and Self-directed Learning

Lifelong learning, its examples, self-directed learning, its examples, important steps in lifelong learning.

Need for planning self-directed learning, planning self-directed learning plan, examples.

## Unit - III Career Planning

Importance of career planning, major career opportunities in concerned branch of engineering, study of the important career opportunities regarding qualification, knowledge, skills, experience required for them, role of personal factors like personal life style, interest areas, desires, personal preferences in career planning.

Identification and detailing of important career opportunities in relation to branch of diploma, identification and detailing of important self-personal factors and self-personal preferences, development of self-career plan.

Necessity of exposure to environment and practices, lectures by industry experts.

Importance of Students' industrial visits, learning through observing real life industrial systems, planning and organizing the industrial visits.

## Unit - V CV, Resume, Bio-data and Interview

Need of presenting self for employment, salient features and formats of bio-data, CV, resume, comparison of the three for their merits, limitations and specific uses, study of cases and examples of bio-data, CV, resume and covering letter by all students for self of for the given cases.

Importance of employment related interviews, purpose of interview, dress code, body language and posture of interviewee, do's and don'ts for interviews, interview checklist, practice of facing employment related interviews for all students.

## **Unit - VI Group Discussion**

Need and importance of group discussion in professional work, ideal group discussion and skills needed to effectively participate in group discussion, practice of group discussion skills.

### **Course Outcomes:**

After completing this course, the student will be able to:-

- (1) Demonstrate his/her understanding of Professional and Social ethics.
- (2) Plan self-learning and self-directed learning for completing the task.
- (3) Suggest an action plan for his career planning.
- (4) Demonstrate his/her learning from visits to industry.
- (5) Prepare CV, Resume and Bio-data along with a covering letter for a job.
- (6) Effectively face an interview.
- (7) Participate in Group discussion.