



# RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL

SCHEME OF STUDIES & EXAMINATIONS (IMPLEMENTED FROM SESSION: JULY 2023)

SCHEME OCBC JULY 2022/2023 NAME OF BRANCH
IC MANUFACTURING

BRANCH CODE I05

SEMESTER FIFTH (V)

|      |               |                 |                                |              |         |                 | THEORY COMPONENT |     |              |       |          |              |         | PRACTICAL COMPONENT    |       |          |               |             |
|------|---------------|-----------------|--------------------------------|--------------|---------|-----------------|------------------|-----|--------------|-------|----------|--------------|---------|------------------------|-------|----------|---------------|-------------|
|      |               |                 |                                | EK           |         | TE              | ERM WORK         |     | THEORY PAPER |       | _        |              |         | PRACTICAL<br>EXAM/VIVA |       | ITS      | IKS           |             |
| S.N. | PAPER<br>CODE | SUBJECT<br>CODE | SUBJECT NAME                   | HRS PER WEEK | CREDITS | QUIZ/ASSIGNMENT | M<br>TEI<br>TES  | RM  | TOTAL        | MARKS | DURATION | HRS PER WEEK | CREDITS | LAB WORK               | MARKS | DURATION | TOTAL CREDITS | TOTAL MARKS |
|      |               |                 |                                |              |         | QUI             | I                | II  |              |       |          |              |         |                        |       |          |               |             |
| 1    | 7564          | 501             | SAFETY PROTO. FOR IC FOUND.    | 4            | 4       | 10              | 10               | 10  | 30           | 70    | 03 Hrs.  | 0            | 0       | 0                      | 0     | 0        | 4             | 100         |
| 2    | 7565          | 502             | VACUUM TECHNOLOGY              | 3            | 3       | 10              | 10               | 10  | 30           | 70    | 03 Hrs.  | 4            | 2       | 20                     | 30    | 03 Hrs.  | 5             | 150         |
| 3    | 7468          | 511             | INDUSTRIAL AUTOMATION OR       | 3            | 3       | 10              | 10               | 10  | 30           | 70    | 03 Hrs.  | 2            | 1       | 20                     | 30    | 03 Hrs.  | 4             | 150         |
| 4    | 7469          | 512             | CONTROL SYSTEM & PLC           | ٦            | ٥       | 10              | 10               | 10  | 30           | 70    | 05 1113. |              |         | 20                     | 3     | 05 1113. | †             | 130         |
| 5    | 7471          | 521             | SEMICOND.PKG. & TESTING OR     | 3            | 3       | 10              | 10               | 10  | 30           | 70    | 03 Hrs.  | 0            | 0       | 0                      | 0     | 0        | 3             | 100         |
|      | 7566          | 522             | SENSORS & ACTUATORS            | Э            | Э       | 10              | 10               | 10  | 30           | 70    | US 1115. | U            | U       | U                      | U     | U        | э             | 100         |
|      | 7601          | 531             | RENEWABLE ENERGY TECH. OR      | _            | _       | 40              | 40               | 10  | 20           | 70    | 02.11    | _            |         |                        |       | •        |               | 400         |
| 6    | 7602          | 532             | INTERNET OF THINGS             | 3            | 3       | 10              | 10               | 10  | 30           | 70    | 03 Hrs.  | 0            | 0       | 0                      | 0     | 0        | 3             | 100         |
| 7    |               |                 | PRINT. CKT. BOARD DGN. LAB     | 0            | 0       | 0               | 0                | 0   | 0            | 0     | 0        | 6            | 3       | 20                     | 30    | 03 Hrs.  | 3             | 50          |
| 8    |               |                 | SUMMER INTERNSHIP-II**         | 0            | 0       | 0               | 0                | 0   | 0            | 0     | 0        | 0            | 3       | 20                     | 30    | 03 Hrs.  | 3             | 50          |
| 9    |               |                 | MAJOR PROJECT***               | 0            | 0       | 0               | 0                | 0   | 0            | 0     | 0        | 2            | 0       | 0                      | 0     | 0        | 0             | 0           |
| 10   |               |                 | RECOVERY CLASSES/LIBERARY etc. | 0            | 0       | 0               | 0                | 0   | 0            | 0     | 0        | 6            | 0       | 0                      | 0     | 0        | 0             | 0           |
|      | TOTAL         |                 | 16                             | 16           |         |                 |                  | 150 | 350          |       | 20       | 9            | 80      | 120                    |       | 25       | 700           |             |

**NOTE** - (1)\* Two Best, out of Three Mid Term Tests (Progressive Tests) Marks should be entered here.

- (2)\*\* 4-6 Weeks Summer Internship after IV Semester.
- (3)\*\*\*One Credit will be carried forward to the Six semester major project evaluation.

| GRAND TOTAL OF CREDITS |
|------------------------|
| 25                     |

| GRAND TOTAL OF MARKS |
|----------------------|
| 700                  |



DIPLOMA IN IC MANUFACTURING (105)

#### SEMESTER V

| COURSE TITLE      | : | SAFETY PROTOCOLS FOR IC FOUNDRY |
|-------------------|---|---------------------------------|
| PAPER CODE        | : | 7564                            |
| SUBJECT CODE      | : | 501                             |
| TREORY CREDITS    | : | 04                              |
| PRACTICAL CREDITS | : | 00                              |

## **Course Contents:**

- 1. Introduction to various types of safety hazards in a fab, e.g. general, chemical, gas, , and radiation. NFPA 704 diamond, signage.
- 2. Basics of cleanroom, layout, and operation from the perspective of safety. Balance of air intake, pressure, & exhaust.
- 3. General safety: Basics of fire safety; extinguishers; emergency response plan; high-voltage safety; PPE; incident reporting; management of change; If possible, demonstration/practical of fire extinguisher.
- 4. Chemical safety: Classification of hazards; Practical aspects like segregation, spill-control & responsible disposal; Mixing of acids and solvents; Toxicity of effluents; Case study of fluorides in cleanroom; If possible, demonstration/practical of RCA clean.
- 5. Gas safety: Type of gasses; PEL and TEL; Practical handling of gases, including storage, usage and transport; Toxic gas system components like sensors, coaxial lines, gas cabinets, valve-manifold and standard-operating procedures for cylinder change; Case study of H2 usage; If possible, demonstration/practical of SCBA.
- 6. Radiation safety: Lasers; UV sources;
- 7. Structured qualitative risk analysis techniques like bowtie; Definition of concepts like Hazards, Top Events, Threats and Consequences; Understand prevention and mitigation strategies; Case studies of SiH4 hazard
- 8. Quantification of hazards; Blast radius calculation of gases like SiH4; case studies; Six sigma.
- 9. Discussion of one industry safety standards from CGA, SEMI, or ASTM.

#### **Text Book/References:**

- 1. Introduction to Mechatronic Design by J. Edward Carryer, Matthew Ohline, Thomas Kenny. Pearson
- 2. A User's Guide to Vacuum Technology by John F. O'Hanlon. Wiley
- 3. Handbook of Vacuum Technology, edited by Karl Jousten, Wiley
- 4. SEMI S2/S8 guidelines.



DIPLOMA IN IC MANUFACTURING (105)

## SEMESTER V

| COURSE TITLE      | : | VACUUM TECHNOLOGY |
|-------------------|---|-------------------|
| PAPER CODE        | : | 7565              |
| SUBJECT CODE      | : | 502               |
| TREORY CREDITS    | : | 03                |
| PRACTICAL CREDITS | : | 02                |

#### Unit 1

Basic Theory: Gas kinetic theory, pressure, conductance, gas flow regimes, vapour pressure, pumping speed, throughput. Gas surface interactions: physisorption, chemi-sorption, condensation.

#### Unit 2

Vacuum Pumps: Mechanical, diffusion, molecular drag, turbo molecular, cryopumps, ion pumps - general working principles, operating regimes.

Vacuum Instrumentation: Vacuum gauges, gas regulators, flow meters, residual gas analyzers, interpretation of data.

#### Unit 3

Design Concepts: Materials, chambers, components, joins, seals, valves. Overall system design and integration.

#### Unit 4

Problem Solving: Leak detection and detectors, gas signatures.

#### Unit 5

Vacuum Applications: Micro fabrication Chemical vapour deposition, physical vapour deposition, sputtering, reactive ion etching, implantation, packaging, Display technologies, X-ray tubes, cryogenic insulation, space simulation.

# **Text Book**

| S. No. | Title of Book                                     | Author                               | Publication                              |
|--------|---------------------------------------------------|--------------------------------------|------------------------------------------|
| 1.     | High-vacuum Technology:<br>A Practical Guide      | M. H. Hablanian, H.<br>H. Hablanian  | 2 <sup>nd</sup> Edition, CRC Press, 1997 |
| 2.     | Ultra High Vacuum<br>Techniques                   | A.D. Tripathi , A.<br>Gupta          | Allied Publishers Private Limited, 2002. |
| 3.     | Vacuum Technology                                 | A Roth                               | Third Edition , Eleciever Science        |
| 4.     | Vacuum Science,<br>Technology and<br>Applications | Pramod K Naik                        | CRC Press                                |
| 5.     | Vacuum Science and<br>Technology                  | V.V. Rao, T.B.<br>Ghosh, K.L. Chopra | Allied Publishers                        |

# **VACUUM TECHNOLOGY LAB**

# List of experiments

- 1. Familiarization of vacuum pumps in range of 10 ^-2 torr to 10 ^-11 torr
- 2. Study of vacuum pumps-roots pump, rotary pump, diffusion pump
- 3. Study of Bayet-Albert guage
- 4. Study of gas regulators
- 5. Study of flow meters
- 6. Study of gas analyzers
- 7. Study of joints, seals and valves
- 8. Study of gas leak detection system

# **Learning resources**

| S. No. | Title of Book                                     | Author                               | Publication                              |
|--------|---------------------------------------------------|--------------------------------------|------------------------------------------|
| 1.     | High-vacuum Technology:<br>A Practical Guide      | M. H. Hablanian, H. H.<br>Hablanian  | 2 <sup>nd</sup> Edition, CRC Press, 1997 |
| 2.     | Ultra High Vacuum<br>Techniques                   | A.D. Tripathi , A. Gupta             | Allied Publishers Private Limited, 2002. |
| 3.     | Vacuum Technology                                 | A Roth                               | Third Edition , Eleciever<br>Science     |
| 4.     | Vacuum Science,<br>Technology and<br>Applications | Pramod K Naik                        | CRC Press                                |
| 5.     | Vacuum Science and<br>Technology                  | V.V. Rao, T.B. Ghosh, K.L.<br>Chopra | Allied Publishers                        |



DIPLOMA IN IC MANUFACTURING (105)

## SEMESTER V

| COURSE TITLE      | : | INDUSTRIAL AUTOMATION |
|-------------------|---|-----------------------|
| PAPER CODE        | : | 7468                  |
| SUBJECT CODE      | : | 511                   |
| TREORY CREDITS    | : | 03                    |
| PRACTICAL CREDITS | : | 01                    |

## **Course Content:**

**Unit I -**Industrial automation overview and data acquisition Architecture of Industrial Automation Systems.

Measurement Systems Characteristics

Data Acquisition Systems

Unit II -Control Generation
Introduction to Automatic Control
P-I-D Control
Feedforward Control Ratio Control
The branching operations based on conditions expression

**Unit III** Sequential control and PLC Introduction to Sequence Control, PLC, RLL PLC Hardware Environment

Unit IV Industrial control application Hydraulic Control Systems Pneumatic Control Systems Energy Savings with Variable Speed Drives Introduction To CNC Machines

# REFERENCES / SUGGESTED LEARNING RESOURCES:

| S. No. | Title of Book                     | Author            | Publication                     |
|--------|-----------------------------------|-------------------|---------------------------------|
| 1.     |                                   |                   | Jaico Publishing House, 2013    |
|        | Control and Automation            | Sen and A. K. Deb | ISBN : 978-8184954098           |
| 2.     | Electric Motor Drives, Modelling, |                   | Prentice Hall India, 2002 ISBN: |
|        | Analysis and Control              |                   | 978-0130910141                  |

# **INDUSTRIAL AUTOMATION LAB**

# List of experiments

- 1. Study hardware and software platforms for DCS
- 2. Simulate analog and digital function blocks
- 3. Study, understand and perform experiments on timers and counters
- 4. Logic implementation for traffic Control Application
- 5. Logic implementation for Bottle Filling Application
- 6. Tune PID controller for heat exchanger using DCS
- 7. Develop a temperature control scheme for a boiler plant using PID
- 8. Develop graphical user interface for a typical industrial application

## **Learning Resources**

| S. No. | Title of Book                                          | Author | Publication                                          |
|--------|--------------------------------------------------------|--------|------------------------------------------------------|
|        | Industrial Instrumentation,<br>Control and Automation  | 1      | Jaico Publishing House, 2013<br>ISBN: 978-8184954098 |
|        | Electric Motor Drives, Modelling, Analysis and Control |        | Prentice Hall India, 2002 ISBN : 978-0130910141      |



DIPLOMA IN IC MANUFACTURING (105)

# SEMESTER V

| COURSE TITLE      | : | CONTROL SYSTEM AND PLC |
|-------------------|---|------------------------|
| PAPER CODE        | : | 7469                   |
| SUBJECT CODE      | : | 512                    |
| TREORY CREDITS    | : | 03                     |
| PRACTICAL CREDITS | : | 01                     |

# **Course Objective:**

The aim of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Maintain electronic automated systems in processs and manufacturing industries.

# **Course Contents:**

| Unit                                  | Unit Outcomes (UOs) (in cognitive domain)                                                                                                                                                                                                                                                                                                                  | Topics and Sub-topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit -I Basics<br>of Control<br>Sysem | <ol> <li>Explain with sketches the working of the given type of control systems.</li> <li>Compare the given</li> <li>Control systems based on the given parameters.</li> <li>Derive transfer function of the given electrical circuits.</li> <li>Use block diagram reduction rules to determine optimize transfer function of the given system.</li> </ol> | <ol> <li>Control system: Basics of control system block diagram and practical examples</li> <li>Classification of control systems:         <ul> <li>Open. loop and closed loop systems-block diagram, practical example and comparison, Linear and non -linear systems, Time varying and Time Invarying systems- practical example and comparison, servo system</li> </ul> </li> <li>Transfer function: Close loop and open loop system RC, LC and RLC Circuits-Differential equations and transfer functions and analysis using Laplace transform</li> <li>Block diagram reduction technique: Need, reduction rules,</li> </ol> |

| <b>Unit –II Time</b> |
|----------------------|
| domain               |
| stability            |
| analysis             |

- 1) Compare the parameter of given standard test inputs.
- 2) Identify poles, zeros, type and order for the given transfer function
- 3) Sketch pole zero plot for The given transfer function.
- 4) Determine output of the given order system for the step input.
- 5) Calculate time response specifications of the given transfer function.
- 6) Calculate error constants of the given type of control

- 1. **Time Response:** Transient and steady state response.
- 2. **Standard test inputs:** Step, ramp, parabolic, impulse and their corresponding Laplace transform
- 3. Analysis of first and second order control system:
  - i. **Poles and zeros -** S-plane representation, Order of system (0, 1, 2)- standard equations, examples and numerical problems
  - ii. **First order System-**Analysis for unit step input, concept of time constant.
  - iii. **Second order system-** Analysis

|                                           | system.  7) Determine stability of the given control system using Routh's stability criteria.                                                                                                                                                                                                          | for unit step input (no derivation), concept, definition and effect of damping  iv. <b>Time response specifications</b> (no derivations) - Tp, Ts, Tr, Td, Mp, Ess, numerical problems  4. <b>Steady state analysis:</b> Type 0, 1, 2 systems steady state error and error constants, numerical problems  5. <b>Stability:</b> Concept of stability, root locations in S-plane and analysis- stable system, unstable system, critically stable systems, conditionally stable system, relative stability  6. <b>Routh's stability criterion:</b> Steps and procedures to find stability by Routh's stability criteria, |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit-III<br>Process<br>controllers        | <ol> <li>Explain with sketch the given process control system.</li> <li>Describe with sketch the given control action.</li> <li>Compare different. electronic controllers on the basis of the given parameters.</li> <li>Sketch the response of the given controller with respect to error.</li> </ol> | <ol> <li>Process Control System: Block diagram, functions of each block</li> <li>Control actions:         <ol> <li>Discontinuous mode- ON-OFF controllers- equation, neutral zone</li> <li>Controller - offset, proportional Controller - offset, proportional band. Propollional, Integral and Derivative controllers - o/p equation, response, characteristics,</li> </ol> </li> <li>Composite controllers: PI, PD, PID controllers- o/p equation, response</li> </ol>                                                                                                                                              |
| Unit-IV<br>Fundamentals<br>of PLC         | <ol> <li>Explain with sketch PLC based automation system.</li> <li>Describe with sketch the given PLC module.</li> <li>Identify different devices interfaced with PLC.</li> <li>Explain the steps for PLC installation.</li> </ol>                                                                     | <ol> <li>PLC-Block diagram, classification, (fixed and modular PLCs), need and benefits of PLC in automation</li> <li>Description of different parts of PLC: CPU-function, scanning cycle, speed of execution, Power supply- block diagram and function of each block         Memory - function and organization of ROM and RAM         Input and output modules- function, different input and output devices of PLC (only name and their uses).</li> <li>PLC Installation</li> </ol>                                                                                                                                |
| Unit-V PLC<br>hardware and<br>programming | <ol> <li>Identify and describe the given module of PLC.</li> <li>Describe the given addressing of PLC.</li> <li>Use instruction set to perform the given operation.</li> <li>Develop ladder logic</li> </ol>                                                                                           | <ol> <li>Discrete input modules: Block diagram, specifications of AC input modules and DC input module. Sinking and sourcing concept in DC input modules</li> <li>Discrete output modules: Block diagram, description, specifications of AC output module and DC output</li> </ol>                                                                                                                                                                                                                                                                                                                                    |

| programs fo  | r the | given | modules.                                           |
|--------------|-------|-------|----------------------------------------------------|
| application. |       | C     | 3. Analog input and output modules:                |
|              |       |       | Block diagram, specifications                      |
|              |       |       | 4. <b>I/O addressing of PLC:</b> Addressing data   |
|              |       |       | files, format addressing of logical                |
|              |       |       | address, different addressing types                |
|              |       |       | 5. <b>PLC Instruction set:</b> Relay instructions, |
|              |       |       | timer and counter instruction s, data              |
|              |       |       | movement instructions, logical and                 |
|              |       |       | comparison instructions                            |
|              |       |       | 6. PLC Programs: using Ladder                      |
|              |       |       | programming language.                              |

# **SUGGESTED LEARNING RESOURCES:**

| S.No | Author                     | Title of Book       | Publication                         |
|------|----------------------------|---------------------|-------------------------------------|
| 1    | Process control            | Johnson, C. D.      | Prentice Hall, 8th edition, United  |
|      | instrumentation Technology |                     | States of America,2014              |
|      |                            |                     | ISBN: 978-0131194571                |
| 2    | Intro. To Programmable     | Dunning, Gary       | Cenage Learning, United States of   |
|      | logic control              |                     | America,2005                        |
|      |                            |                     | ISBN: 9781401884260                 |
| 3    | Control System Engineering | Nagrath, J.J. ;     | Anshan Publishers (2008) ISBN:      |
|      |                            | Gopal, M.           | 9781848290037                       |
| 4    | Modern control Engineering | Ogata, K.           | PHI, 5th Edition, NEW DELHI,2010    |
|      |                            |                     | ISBN: 978812034010                  |
| 5    | Programmable logic         | Mitra.              | Penram, 1st Edition, Mumbai. 2007   |
|      | controllers and industrial | Madhuchhanda ;      | ISBN: 9788 I 87972174               |
|      | automation an introduction | Gupta, Samaijit Sen |                                     |
| 6    | Progrnmmable logic         | Petruzella, F.D.    | Tata- McGraw Hill, 3n Edition, 2010 |
|      | controllers                |                     | ISBN: 9780071067386                 |

# **SOFTWARE/LEARNING WEBSITES**

- 1. www.scilab.org
- 2. www.openplc.fossee.in
- 3. www.github.com/FOSSEE/OpenPLC
- 4. www.youtube.com/plc
- 5. www.dreamtechpress.com/ebooks
- 6. <a href="www.nptelvideos.com/control\_systems/">www.nptelvideos.com/control\_systems/</a>
- 7. www.in.mathworks.com/ solutions/ control-systems.html ?s \_ tid=srchtitle
- 8. www.edx.org/course?subject=Engineering&course=all&language=English
- 9. www.plcs.net
- 10. www.ab.rockwellautomation.com > Allen-Bradley
- 11. www.plc-training-rslogix-simulator.soft32.com/free-download/

## **Course Outcome:**

The theory, practical experiences and relevant soft skills associated with this course are to be taught and implemented, so that the student demonstrates the following industry oriented COs associated with the above mentioned competency:

- 1. Identify different types of control systems.
- 2. Determine the stability of the control system.
- 3. Test the performance of various types of controllers.
- 4. Maintain various components of PLC based process control system.
- 5. Maintain PLC based process control systems.

# **CONTROL SYSTEM AND PLC LAB**

## **Course Objective:**

The aim of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Maintain electronic automated systems in processs and manufacturing industries.

## SUGGESTED PRACTICALS/ EXERCISES

- 1. Use potentiometer as error detector.
- 2. Determine error of angular position of DC servo system.
- 3. Test the Step response of R-C (first order) circuit.
- 4. Test the Step response of R-L-C (second order) circuit.
- 5. Test the functionality of temperature control with on-off controller.
- 6. Use PI controller to control temperature of the given process.
- 7. Use PD controller to control temperature of the given process.
- 8. Use PID controller to control temperature of the given process.
- 9. Identify and test different parts of PLC.
- 10. Develop ladder diagram to test the functionality of the logic gates.
- 11. Develop ladder diagram to test Demorgan's theorem.
- 12. Develop the ladder diagram for Adder and Subtractor by using PLC.
- 13. Develop ladder diagram for ON and OFF control of lamp using timer and counter.
- 14. Develop ladder diagram for traffic light Control system.
- 15. Develop ladder diagram for stepper motor control.
- 16. Develop ladder diagram for temperature controller.

## SUGGESTED LEARNING RESOURCES:

| S.No | Author                     | Title of Book   | Publication                        |
|------|----------------------------|-----------------|------------------------------------|
| 1    | Process control            | Johnson, C. D.  | Prentice Hall, 8th edition, United |
|      | instrumentation Technology |                 | States of America, 2014            |
|      |                            |                 | ISBN: 978-0131194571               |
| 2    | Intro. To Programmable     | Dunning, Gary   | Cenage Learning, United States of  |
|      | logic control              |                 | America,2005                       |
|      |                            |                 | ISBN: 9781401884260                |
| 3    | Control System Engineering | Nagrath, J.J. ; | Anshan Publishers (2008) ISBN:     |
|      |                            | Gopal, M.       | 9781848290037                      |

| 4 | Modern control Engineering | Ogata, K.           | PHI, 5th Edition, NEW DELHI,2010    |
|---|----------------------------|---------------------|-------------------------------------|
|   |                            |                     | ISBN: 978812034010                  |
| 5 | Programmable logic         | Mitra.              | Penram, 1st Edition, Mumbai. 2007   |
|   | controllers and industrial | Madhuchhanda ;      | ISBN: 9788 I 87972174               |
|   | automation an introduction | Gupta, Samaijit Sen |                                     |
| 6 | Progrnmmable logic         | Petruzella, F.D.    | Tata- McGraw Hill, 3n Edition, 2010 |
|   | controllers                |                     | ISBN: 9780071067386                 |

#### **SOFTWARE/LEARNING WEBSITES**

- 12. www.scilab.org
- 13. www.openplc.fossee.in
- 14. www.github.com/FOSSEE/OpenPLC
- 15. www.youtube.com/plc
- 16. www.dreamtechpress.com/ebooks
- 17. www.nptelvideos.com/control\_ systems/
- 18. www.in.mathworks.com/ solutions/ control-systems.html ?s \_ tid=srchtitle
- 19. www.edx.org/course?subject=Engineering&course=all&language=English
- 20. www.plcs.net
- 21. www.ab.rockwellautomation.com > Allen-Bradley
- 22. www.plc-training-rslogix-simulator.soft32.com/free-download/

## **Course Outcome:**

The theory, practical experiences and relevant soft skills associated with this course are to be taught and implemented, so that the student demonstrates the following industry oriented COs associated with the above mentioned competency:

- 6. Identify different types of control systems.
- 7. Determine the stability of the control system.
- 8. Test the performance of various types of controllers.
- 9. Maintain various components of PLC based process control system.
- 10. Maintain PLC based process control systems.



DIPLOMA IN IC MANUFACTURING (105)

#### SEMESTER V

| COURSE TITLE      | : | SEMICONDUCTOR PACKAGING AND TESTING |
|-------------------|---|-------------------------------------|
| PAPER CODE        |   | 7471                                |
| SUBJECT CODE      | : | 521                                 |
| TREORY CREDITS    | : | 03                                  |
| PRACTICAL CREDITS | : | 00                                  |

## **Course Objective:**

The course deals with electronics systems packaging – a multidisciplinary area. The course will discuss all the vital features of Electronic packaging at three major levels, namely, chip level, board level and system level. This course covers the technology advancements of microelectronic packaging from design to fabrication; assembly and testing and discuss the Current trends in packaging of electronic systems.

#### **Detailed Content:**

## **Unit-1: Overview of Electronic Systems Packaging**

Functions of Electronic Packaging, Packaging Hierarchy, IC packaging: MEMS packaging, consumer electronics packaging, medical electronics packaging, Trends and Challenges, Driving Forces on Packaging Technology, Materials for Microelectronic packaging, Packaging Material Properties, Ceramics, Polymers, and Metals in Packaging, Material for high density interconnect substrates

# **Unit -2: Electrical Issues in Packaging**

Electrical Issues of Systems Packaging, Signal Distribution, Power Distribution, Electromagnetic Interference, Transmission Lines, Clock Distribution, Noise Sources, Digital and RF Issues. Design Process Electrical Design: Interconnect Capacitance, Resistance and Inductance fundamentals; Packaging roadmaps - Hybrid circuits - Resistive, Capacitive and Inductive parasitics.

# **Unit -3: Chip Level Packaging**

IC Assembly - Purpose, Requirements, Technologies, Wire bonding, Tape Automated Bonding, Flip Chip, Wafer Level Packaging, reliability, wafer level burn – in and test. Single chip packaging: functions, types, materials processes, properties, characteristics, trends. Multi chip packaging: types, design, comparison, trends. System – in - package (SIP); Passives: discrete, integrated, and embedded.

## **Unit -4: PCB, Surface Mount Technology and Thermal Considerations**

Printed Circuit Board: Anatomy, CAD tools for PCB design, Standard fabrication, Micro via Boards. Board Assembly: Surface Mount Technology, Through Hole Technology, Process Control and Design challenges. Thermal Management, Heat transfer fundamentals, Thermal conductivity and resistance, Conduction, convection and radiation – Cooling requirements

## **Unit -5: Testing**

Reliability, Basic concepts, Environmental interactions. Thermal mismatch and fatigue – failures – thermo mechanically induced –electrically induced – chemically induced. Electrical Testing: System level electrical testing, Interconnection tests, Active Circuit Testing, Design for Testability.

#### **Textbook/Reference books:**

- 1. Tummala, Rao R., Fundamentals of Microsystems Packaging, McGraw Hill, 2001.
- 2. Blackwell (Ed), The electronic packaging handbook, CRC Press, 2000.
- 3. Tummala, Rao R, Microelectronics packaging handbook, McGraw Hill, 2008.
- 4. Bosshart, Printed Circuit Boards Design and Technology, TataMcGraw Hill, 1988.
- 5. R.G. Kaduskar and V.B.Baru, Electronic Product design, Wiley India, 2011
- 6. R.S.Khandpur, Printed Circuit Board, Tata McGraw Hill, 2005
- 7. Recent literature in Electronic Packaging
- 8. Michael L. Bushnell & Vishwani D. Agrawal," Essentials of Electronic Testing for Digital, memory & Mixed signal VLSI Circuits", Kluwer Academic Publishers. 2000.
- 9. M. Abramovici, M. A. Breuer, and A.D. Friedman, "Digital System Testing and Testable Design", Computer Science Press,1990

#### **Course Outcomes:**

At the end of the course learners will be able to

- 1. Discuss the various packaging types
- 2. Design of packages which can withstand higher temperature, vibrations and shock
- 3. Design of PCBs which minimize the EMI and operate at higher frequency
- 4. Analyze the concepts of testing methods.
- 5. Discuss the various packaging types

\*\*\*\*

DIPLOMA IN IC MANUFACTURING (105)

#### SEMESTER V

| COURSE TITLE      | : | SENSORS AND ACTUATORS |
|-------------------|---|-----------------------|
| PAPER CODE        | : | 7566                  |
| SUBJECT CODE      | : | 522                   |
| TREORY CREDITS    | : | 03                    |
| PRACTICAL CREDITS | : | 00                    |

#### **Course Contents:**

#### Unit-1

Principles of operation, construction, theory, advantages and disadvantages, applications of-**Resistive Transducers:** Potentiometers, strain gauges, (metallic and semi-conductor type), Resistance Thermometer, Thermistors.

## Unit- 2

Principles of operation, construction, theory, advantages and disadvantages, applications of-**Inductive Transducers:** LVDT (Linear variable differential transformer).

Capacitive Transducers: various capacitive transducers based upon familiar equation of Capacitance

#### Unit-3

Principles of operation, construction, theory, advantages and disadvantages, applications of-**Active Transducers:** Thermocouple, Piezo-electric transducer, Hall Effect transducer, Flow meter

#### Unit-4

Actuators: Thermal actuators, Electrostatic actuators , Piezoelectric actuators, magnetic actuators

#### Unit-5

Understanding of sensor interfacing with microprocessor to build electronic systems. Static and Dynamic characteristic parameters for sensors and actuators, calibration of sensor based electronic systems

#### **TEXT BOOKS**

- 1. Patranabis.D, "Sensors and Transducers", Wheeler publisher, 1994.
- 2. Jacob Fraden, "Hand Book of Modern Sensors: Physics, Designs and Application" Fourth edition, Springer, 2010.
- 3. Sabrie Soloman, Sensors Technology Handbook
- 4. Robert H Bishop, "The Mechatronics Hand Book", CRC Press, 2002



DIPLOMA IN IC MANUFACTURING (105)

#### SEMESTER V

| COURSE TITLE      | : | RENEWABLE ENERGY TECHNOLOGIES |
|-------------------|---|-------------------------------|
| PAPER CODE        | : | 7601                          |
| SUBJECT CODE      | : | 531                           |
| TREORY CREDITS    | : | 03                            |
| PRACTICAL CREDITS | : | 00                            |

## **Course Learning Objectives:**

- To understand present and future scenario of world energy use.
- To understand fundamentals of solar energy systems.
- To understand basics of wind energy.
  - To understand bio energy and its usage in different ways.
  - To identify different available non-conventional energy sources.

#### **Course Content:**

**UNIT-I: Introduction:** World Energy Use; Reserves of Energy Resources; Environmental Aspects of Energy Utilisation; Renewable Energy Scenario in India and around the World; Potentials; Achieve-ments / Applications; Economics of renewable energy systems.

**Unit-II: Solar energy:** Solar Radiation; Measurements of Solar Radiation; Flat Plate and Concentrat- ing Collectors; Solar direct Thermal Applications; Solar thermal Power Generation Fundamentals of Solar Photo Voltaic Conversion; Solar Cells; Solar PV Power Generation; Solar PV Applications.

**Unit-III: Wind Energy:** Wind Data and Energy Estimation; Types of Wind Energy Systems; Perfor- mance; Site Selection; Details of Wind Turbine Generator; Safety and Environmental Aspects.

**Unit-IV: Bio-Energy:** Biomass direct combustion; Biomass gasifiers; Biogas plants; Digesters; Etha-nol production; Bio diesel; Cogeneration; Biomass Applications.

**Unit-V: Other Renewable Energy Sources:** Tidal energy; Wave Energy; Open and Closed OTEC Cy-cles; Small Hydro-Geothermal Energy; Hydrogen and Storage; Fuel Cell Systems; Hybrid Systems.

#### **Reference Books:**

- 1. O.P. Gupta, Energy Technology, Khanna Publishing House, Delhi (ed. 2018)
- 2. Renewable Energy Sources, Twidell, J.W. & Weir, A., EFN Spon Ltd., UK, 2006.
- 3. Solar Energy, Sukhatme. S.P., Tata McGraw Hill Publishing Company Ltd., New Delhi, 1997.
- 4. Renewable Energy, Power for a Sustainable Future, Godfrey Boyle, Oxford University Press, U.K., 1996.
- 5. Fundamental of Renewable Energy Sources, GN Tiwari and MK Ghoshal, Narosa, New Delhi, 2007.
- 6. Renewable Energy and Environment-A Policy Analysis for India, NH Ravindranath, UK Rao, BNatarajan, P Monga, Tata McGraw Hill.
- 7. Energy and The Environment, RA Ristinen and J J Kraushaar, Second Edition, John Willey &Sons, New York, 2006.
- 8. Renewable Energy Resources, JW Twidell and AD Weir, ELBS, 2006.

#### **Course outcomes:**

At the end of the course, the student will be able to:

| CO1 | Understand present and future energy scenario of the world.                      |
|-----|----------------------------------------------------------------------------------|
| CO2 | Understand various methods of solar energy harvesting.                           |
| CO3 | Identify various wind energy systems.                                            |
| CO4 | Evaluate appropriate methods for Bio energy generations from various Bio wastes. |
| CO5 | Identify suitable energy sources for a location.                                 |



DIPLOMA IN IC MANUFACTURING (105)

#### SEMESTER V

| COURSE TITLE      | : | INTERNET OF THINGS |
|-------------------|---|--------------------|
| PAPER CODE        | : | 7602               |
| SUBJECT CODE      | : | 532                |
| TREORY CREDITS    | : | 03                 |
| PRACTICAL CREDITS | : | 00                 |

#### **Course Content:**

## **Unit I** - Introduction to Internet of Things

- Define the term "Internet of Things"
- State the technological trends which have led to IoT.
- Describe the impact of IoT on society.

#### **Unit II -** Design consideration of IoT

- Enumerate and describe the components of an embedded system.
- Describe the interactions of embedded systems with the physical world.
- Name the core hardware components most commonly used in IoT devices.

#### **Unit III** Interfacing by IoT devices

- Describe the interaction between software and hardware in an IoT device.
- Explain the use of networking and basic networking hardware.
- Describe the structure of the Internet.

#### **SUGGESTED LEARNING RESOURCES:**

| S. No. | Title of Book                              | Author                               | Publication                                                        |
|--------|--------------------------------------------|--------------------------------------|--------------------------------------------------------------------|
| 1      | Internet of Things                         | Raj Kamal                            | McGraw Hill Education; First edition (10 March 2017)               |
|        |                                            |                                      | ISBN 978-9352605224                                                |
| 2      | internet of Things: A<br>Hands-On Approach | Arsheep Bahge and<br>Vijay Madisetti | Orient Blackswan Private Limited - New Delhi; First edition (2015) |
|        |                                            |                                      | ISBN: 978-8173719547                                               |

## **SUGGESTED SOFTWARE/LEARNING WEBSITES:**

- 1. https://www.raspberrypi.org/blog/getting-started-with-iot/
- 2. https://www.arduino.cc/en/IoT/HomePage
- 3. https://www.microchip.com/design-centers/internet-of-things
- 4. https://learn.adafruit.com/category/internet-of-things-iot
- 5. http://esp32.net/



DIPLOMA IN IC MANUFACTURING (105)

#### SEMESTER V

| COURSE TITLE      | : | PRINTED CIRCUIT BOARD DESIGN LAB |
|-------------------|---|----------------------------------|
| PAPER CODE        | : |                                  |
| SUBJECT CODE      | : |                                  |
| TREORY CREDITS    | : | 00                               |
| PRACTICAL CREDITS | : | 03                               |

## **List of Experiments**

1. Using any Electronic design automation (EDA) software, Practice following PCB Design steps (Open source EDA Tool KiCad/QUCS Preferable)

Example circuit: Basic RC Circuits

- Schematic Design: Familiarization of the Schematic Editor, Schematic creation, Annotation, Netlist generation
- Layout Design: Familiarization of Footprint Editor, Mapping of components, Creation of PCB layout Schematic
- Create new schematic components
- Create new component footprints
- 2. Design PCB (schematic and Layout) for following exercises.
  - 1. Simple voltage regulator
  - 2. Opamp circuits
  - 3. Rectifiers
  - 4. Multivibrators
  - 5. Oscillators
  - 6. Full-Adder using half-adders
  - 7. 4 bit binary counter using Flip Flops
  - 3. Fabricate single-side/doubleside PCB for simple electronic circuits

# **Learning resources**

| S. No. | Title of Book                                          | Author   | Publication             |
|--------|--------------------------------------------------------|----------|-------------------------|
|        | Complete PCB Design using orcad capture and pcb editor | <u> </u> | Newpress                |
|        | PCB design and Layout fundamentals for EMC             | Roger Hu | Independently Published |



DIPLOMA IN IC MANUFACTURING (105)

# SEMESTER V

| COURSE TITLE      | : | SUMMER INTERNSHIP - II |
|-------------------|---|------------------------|
| PAPER CODE        | : |                        |
| SUBJECT CODE      | : |                        |
| TREORY CREDITS    | : | 00                     |
| PRACTICAL CREDITS | : | 03                     |

# SUMMER INTERNSHIP - II

4-6 weeks summer internship after IV<sup>th</sup> Semester.

It should be undertaken in an Industry only.

Evaluation is based on work done, quality of report, performance in viva-voce, presentation etc.



DIPLOMA IN IC MANUFACTURING (105)

# SEMESTER V

| COURSE TITLE      | : | MAJOR PROJECT                            |  |
|-------------------|---|------------------------------------------|--|
| PAPER CODE        | : |                                          |  |
| SUBJECT CODE      | : |                                          |  |
| TREORY CREDITS    | : | 00                                       |  |
| PRACTICAL CREDITS | : | 00 ( ONE CREDIT WILL BE CARRIED FORWARD  |  |
|                   |   | TO THE VI SEM. MAJOR PROJECT EVALUATION) |  |

# **MAJOR PROJECT**

It should be based on real/live problems of the Industry/Govt./NGO/MSME/Rural Sector or an innovative idea having the potential of a Startup.

Evaluation is based on work done, quality of report, performance in viva-voce, presentation etc.