	OUTCOME BASED CURRICULUM		
	PRPC		
SEMESTER III	INDUSTRIAL PROCESS CALCULATION FORMAT-3	SHEET NO	
COURSE CO	DE	HRS	MARKS
COURSE OUTCOME- 1	To apply the concept of units and dimensions in solving refinery and petrochemical engineering problems.		
LEARNING OUTCOME-1	To use different system of units for physical quantities dimension and units.		
CONTENTS	To use different system of units for physical quantities dimension and units.		
METHOD OF ASSESSMENT			
LEARNING OUTCOME-2	To differentiate fundamental and drived quantities		
CONTENTS	Fundamental and derived quantities, unit in different systems.		
METHOD OF ASSESSMENT			
LEARNING OUTCOME-3	To convert units of particular quantity from one system to another system.		
CONTENTS	Conversion of units, dimensional equation.		
METHOD OF ASSESSMENT			
COURSE OUTCOME- 2	To apply the concept of mole, weight, density and volumefor basic chemical calculation.		
LEARNING OUTCOME-1	To use mole concept for mathematical calculation in refinery industry.		
CONTENTS	Basic chemical calculation introduction, mole concept, atomic weight, molecular weight and equivalent weight and mass reactions in chemical reactions.		
METHOD OF			
ASSESSMENT			
LEARNING	To find molarity. commodity and normality of a given solution.		

CONTENTS	Methods of expressing the composition of mixtures and		
	solutions. Weight percent, mole percent, volume percent,		
	molarity, molality and normality, density specific gravity and		
	'API gravity', Baume.		
METHOD OF			
ASSESSMENT			
COURSE OUTCOME-	To use ideal gas law for solving refinery engineering problems.		
3			
LEARNING	To describe various gas laws used for calculations in problem		
OUTCOME-1	refinery		
	Behaviour of ideal gases - Boyle's law, Charlie's law, Avogodro's		
CONTENTS	hypotheris nartial pressure Dalton's law of partial pressure		
	Amagats law of nure component volume		
METHOD OF			
ASSESSMENT			
LEARNING			
OUTCOME-2			
CONTENTS	Standard conditions, application of ideal gas law, vapour		
	pressure.		
METHOD OF			
ASSESSMENT			
COURSE OUTCOME-	To solve the material balance problems in refinery and		
4	petrochemical industry.		
	- II C I II II		
LEARNING	To prepare a diagram for various unit problem regarding		
OUTCOME-1	material balance.		
	Material balance – Introduction process flow sheet and block		
CONTENTS	diagram		
METHOD OF			
ASSESSMENT			
LEARNING	To differentiate process with chemical reaction and without		
OUTCOME-2	chemical reaction.		
	Processes involving no chemical reaction, processes involving		
CONTENTS	chemical reaction, concept of limiting and excess reactant, Tie		
CONTENTS	and Key component		
METHOD OF			
ASSESSMENT			
LEARNING	To describe the concept of conversion, recycling puryring		
OUTCOME-3	operations.		
	percentage conversion and degree of comparison simple		
I		1	

	of some common process.	
METHOD OF		
ASSESSMENT		
COURSE OUTCOME- 5	To calculate calorific value and air required for combustion for various fuels in industry	
LEARNING	To classify fuel on the basis of structure.	
OUTCOME-1		
CONTENTS	Fuel and combustion – Introduction, calorific value of fuels proximate and ultimatic analysis of coal, simple calculations.	
METHOD OF		
ASSESSMENT		
LEARNING	To determine are required for combustionin petrochemical	
OUTCOME -2	industry.	
CONTENTS	AirRequirement for combustion and flue gases. Theoretical and excess air requirement for combustion sample combustion calculations.	
METHOD OF		
ASSESSMENT		