RGPV (DIPLOMA WING) BHOPAL			OBE CURRICULUM FOR THE COURSE		FORMAT-3		Sheet No. 1/3	
Branch Refrig	eration A	And Ai	d Air-Conditioning Semester IV			IV		
Course Code	40	1	Course Name	STRENGT	H OF MATI	ERIALS		
Course Outcome 1		Calcul	Calculate stresses, strain and strain energy.			Teach Hrs Marks		
Learning Outcome 1		Draw stress strain diagram for a given material.			04	05		
Contents Method of		Simple stresses and strains viz. tensile, compressive, Shear, Crushing, Thermal, fatigue stresses and strains, Hook's Law, Stress- Strain curve for ductile material and brittle material. Paper pen test						
Assessment Learning Outcome 2		Calculate stresses, strains, elastic constants, principal stresses and strains for a given condition.				06	10	
Contents		Factor of Safety, Elastic Constants, Lateral Strain, Poisson's ratio, Bulk Modulus, Shear Modulus, Volumetric Strain. Relation between elastic constants—Problems on Direct Stresses and Linear Strains, Hook's Law elastic constants. Principal stresses and strains. Mohr's Circle.						
Method of Assessment			y exam					
Learning Outcome 3		Calcul object		nder given loading for	a given	06	05	
Contents		Strain Energy: Strain energy or resilience, proof resilience and modulus of resilience; formulae of strain energy for the following cases: i) Gradually applied load, ii) Suddenly applied load, iii) Impact/shock load; numerical problems based on strain energy.						
Method of		1	pen test	a on strain energy.				
Assessment Course Outcon	na 2	Darfor	m mechanical testi	ng of materials				
Learning Outcome		Descri	Perform mechanical testing of materials. Describe an appropriate test method for a mechanical 09 20 property of a given meterial				20	
Contents		property of a given material. Mechanical properties of materials brittleness, creep, ductility, elasticity, hardness, malleability, plasticity, strength, stiffness, toughness, endurance limit, Destructive testing, tensile test, compression test, shear test bending test, hardness test, torsion test, impact test fatigue test, Non- destructive testing methods, visual testing, ultrasonic testing, radiography testing, electromagnetic testing, magnetic particle testing, acoustic emission testing, liquid penetrate testing, leak testing methods						
Method of Assessment		Laboratory test by observation						
Learning Outc	ome 2		m a given destructi material.	ve/ non-destructive te	st for a	36	30	

	T					
	Destructive testing, tensile test, compression test, shear test bending test,					
	hardness test, torsion test, impact test fatigue test,					
Contents	Non- destructive testing methods, visual testing, ultrasonic testing,					
	radiography testing, electromagnetic testing, magnetic particle testing,					
	acoustic emission testing, liquid penetrate testing, leak testin	g metho	ds			
Method of	Laboratory test by observation					
Assessment						
~ ^ ^		Teach	3.5.1			
Course Outcome 3	Draw SFD and BMD for a given beam under loading.		Marks			
	Describe types of load, shear force, bending moment acting		05			
Learning Outcome 1	on beams.	04	0.5			
C 4 4	Definition-Shear Force and Bending Moment, types of beams cantilever,					
Contents	simply supported, overhanging and fixed beams, types of load acting on					
	beams- point load, uniformly distributed load, uniformly varying load,					
Method of	Theory exam					
Assessment		Γ	1			
Learning Outcome 2	Draw shear force, bending moment diagram for a beam	10	15			
	under a given loading condition.					
Contents	Bending Moment and its importance -sign convention to draw shear force					
	diagram and bending moment diagram- Concept of Maximum bending					
	moment, Point of Contra-flexure and its importance-Drawing shear force and					
	bending moment diagram for Cantilever, Simply Supported Beams subjected to Point Load and U.D.L					
Method of	Theory exam					
	Theory exam					
Assessment	C-11-4-1	T1-	N /1			
Course Outcome 4	Calculate bending stresses for a given beam.	Teach Hrs	Marks			
Learning Outcome 1	Explain bending stresses, modulus of section and bending	04	06			
	equation.					
Contents	Position of neutral axis in beams, moment of resistance, Bending equation					
	(without proof), Modulus of section for rectangular, hollow rectangular,					
	circular and hollow circular sections, Beams of uniform strength,					
Method of	Theory exam	15111,				
Assessment	Inoty Chain					
Learning Outcome 2	Express relation between bending stress and radius of	04	05			
Learning Outcome 2		U -1	0.5			
<u> </u>	curvature.	<u> </u>	<u> </u>			
Contents	Introduction, assumptions in theory of simple bending, bending stress,					
	relation between bending stress and radius of curvature (form	nula only	/).			
Method of	Assignment					
Assessment						
		Γ	1			
Learning Outcome 3	Calculate slope, deflection, flexural strength of a given beam.	08	10			
Contents	Calculation of slope, deflection, flexural strength of cantilever and simply					
Contents						
	supported beams for point load and UDL.					
Method of	Paper pen test					
TATCHION OI						
Assessment	raper pen test					

Learning Outcome 4	Calculate stresses using bending equation on a given beam.	08	14			
Contents	Factor of Safety, Elastic Constants, Lateral Strain, Poisson's ratio, Bulk					
	Modulus, Shear Modulus, Volumetric Strain. Relation between elastic					
	constantsProblems on Direct Stresses and Linear Strains, Hook's Law					
	elastic constants. Principal stresses and strains. Mohr's Circle, Problems o					
	bending equation					
Method of	Theory exam					
Assessment		Teach				
Course Outcome 5	Calculate design parameters of circular shafts and springs		Marks			
Learning Outcome 1	Calculate design parameters of a given shaft.	08	10			
Contents	Definition and function of shaft: Calculation of polar M.I. for solid and hollow shafts; Assumptions in simple torsion; Derivation of the equation $T/J=f_s/R=G\theta/L$; Numerical Problems on design of shaft based on strength and rigidity					
Method of Assessment	Theory exam					
Learning Outcome 2	Explain springs, its classification and stiffness of a spring.	05	05			
Contents	Classification of springs: Nomenclature of closed coil helical spring; Deflection formula for closed coil helical spring (without derivation); stiffness of spring.					
Method of	Quiz					
Assessment						
Learning Outcome 3	Calculate design parameters of a given spring.	08	10			
Contents	Numerical Problems related to comparison of strength and weight of solid and hollow shafts. Numerical problems on closed coil helical spring to find safe load, deflection, size of coil and number of coils.					
Method of	Theory exam					
Assessment						